Ultrafast dynamics of highly-excited Dirac fermions in monolayer graphene1 JUNHUA ZHANG, JÖRG SCHMALIAN, TIANQI LI, JIGANG WANG, Ames Laboratory and Department of Physics and Astronomy, Iowa State University — One of the striking optical properties of single-layer graphene is the universal absorbance in the near-infrared-to-visible spectral range due to the Dirac spectrum of the low-energy electronic structure. High-fluence laser pump can produce superdense Dirac-fermionic excitations at the order of 10 femtoseconds so to reach the non-linear saturation of absorption. We construct a simple model for the transient state of the photo-excited graphene to explore the non-linear saturation of photoexcitations and the transport property of carries. The comparison of our model calculations with the experimental results shows good agreements.

1Research supported by the U. S. DOE, office of BES, Materials Science and Engineering Division.

Junhua Zhang
Ames Laboratory and Department of Physics
and Astronomy, Iowa State University