First-Principles Calculations of Lattice-Strained Core-Shell Nanocrystals
K.H. KHOO, Institute of High Performance Computing, A*STAR, J.T. ARANTES, Universidade Federal do ABC, JAMES R. CHELIKOWSKY, University of Texas at Austin, G.M. DALPIAN, Universidade Federal do ABC — We have studied the properties of CdS-ZnS and ZnS-CdS core-shell nanocrystals over a range of shell thicknesses using real-space pseudopotential density functional theory. The effect of structural relaxation was shown to be important as it leads to significant changes in the HOMO-LUMO gap and frontier orbital localizations. Also, strains due to lattice mismatch are predicted to be highly localized around the core-shell interface, giving rise to a thin shell regime where both confinement and strain effects are important and a thick shell regime where confinement effects dominate. This has interesting implications for the evolution of the HOMO-LUMO gap with shell thickness.

The work was supported in part by the U. S. Department of Energy, Office of Basic Energy Sciences and Office of Advanced Scientific Computing Research from DE-FG02-06ER15760 on nanostructures and DE-SC000187 on algorithms.