Commensurate antiferromagnetic ordering in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ determined by x-ray resonant magnetic scattering at the Fe K edge1

M.G. KIM, A. KREYSSIG, Y.B. LEE, Ames Laboratory and Dep. of Physics and Astronomy, Iowa State University, Ames, J.W. KIM, Advanced Photon Source, Argonne National Laboratory, D.K. PRATT, A. THALER, S.L. BUD’KO, P.C. CANFIELD, B.N. HARMON, R.J. MCQUEENEY, A.I. GOLDMAN, Ames Laboratory and Dep. of Physics and Astronomy, Iowa State University, Ames — We describe x-ray resonant magnetic diffraction measurements at the Fe K edge of both the parent BaFe$_2$As$_2$ and superconducting Ba(Fe$_{0.953}$Co$_{0.047}$)$_2$As$_2$ compounds. From these high-resolution measurements we conclude that the magnetic structure is commensurate for both compositions. The energy spectrum of the resonant scattering is in reasonable agreement with theoretical calculation using the full-potential linear augmented plane-wave method with a local density functional. The calculation suggests that the resonant scattering at the Fe K edge in the σ-to-π scattering channel arises from dipole allowed transitions from the core 1s states to the unoccupied 4p states that are spin polarized due to hybridization with the 3d states close to the Fermi energy.

1The work at the Ames Laboratory was supported by the DMSE, Office of Basic Energy Science, the US DOE, under contract No. DE-AC02-07CH11358.

Min Gyu Kim
Iowa State University and Ames Laboratory

Date submitted: 09 Dec 2010

Electronic form version 1.4