Enhanced Dihydrogen-Metal Interaction in Transition Metal Exposed Paddle-Wheel Frameworks

YONG-HYUN KIM, KAIST, JOONGOO KANG, SU-HUAI WEI, National Renewable Energy Laboratory, JI HYUN BAK, KAIST — The experimentally observed enhancement of hydrogen adsorption in Cu$_2$-tetracarboxylate paddle-wheel frameworks is investigated by first-principles density-functional theory calculations [1]. We reveal that the puzzling enhancement is due to the effective orbital coupling between the occupied H$_2$ σ and the unoccupied Cu 4s-derived states. The nontrivial dihydrogen-metal σs interaction is enabled by a strong localization of the Cu 4s orbital after hybridizing with the neighboring oxygen 2p orbitals. Based on this understanding, we predict that the dihydrogen-metal interaction can be further increased by alloying Cu with s-orbital element Zn or Mg. We will also discuss on the enhanced dihydrogen adsorption on other 3d-transition-metal paddle wheel frameworks.