Abstract for an Invited Paper
for the MAR11 Meeting of
The American Physical Society

Convective microsphere monolayer deposition
JAMES GILCHRIST, Lehigh University

There is perhaps no simpler way of modifying surface chemistry and morphology than surface deposition of particles. Micron-sized microspheres were deposited into thin films via rapid convective deposition, similar to the ‘coffee ring effect’ using a similar method to that studied by Prevo and Velev, Langmuir, 2003. By varying deposition rate and blade angle, the optimal operating ranges in which 2D close-packed arrays of microspheres existed were obtained. Self-assembly of colloidal particles through a balance of electrostatic and capillary forces during solvent evaporation was revealed. These interactions were explored through a model comparing the residence time of a particle in the thin film and the characteristic time of capillary-driven crystallization to describe the morphology and microstructure of deposited particles. Co-deposition of binary suspensions of micron and nanoscale particles was tailored to generate higher-quality surface coatings and a simple theory describes the immergence of instabilities that result in formation of stripes. Optical and biomedical applications that utilize the described nanoscale control over surface morphology will also be discussed.