Local effects in the X-ray absorption spectrum of salt water
ERIC SCHWEGLER, Lawrence Livermore National Laboratory, HEATHER KULIK, Stanford University, NICOLA MARZARI, University of Oxford, ALFREDO CORREA, Lawrence Livermore National Laboratory, DAVID PRENDERGAST, Lawrence Berkeley National Laboratory, GIULIA GALLI, UC Davis — We have used first principles molecular dynamics and theoretical X-ray absorption spectroscopy (XAS) to investigate the aqueous solvation of cations in MgCl$_2$, CaCl$_2$, and NaCl solutions. We focus our discussion on the species-specific effects that Mg$^{2+}$, Ca$^{2+}$, and Na$^+$ have on the X-ray absorption spectrum of the respective solutions. For the divalent cations, we find that the water molecules that form a rigid first solvation shell around Mg$^{2+}$ and a more flexible solvation shell around Ca$^{2+}$ also exhibit differing hydrogen bonding characteristics. Acceptor hydrogen bonds present in the water surrounding Ca$^{2+}$ enhance a post-edge peak near 540 eV in the XAS spectrum, while the absence of such hydrogen bonding features for the first shell surrounding Mg$^{2+}$ corresponds to a diminished intensity at the post-edge peak. For Na$^+$, we find that a broad tilt angle distribution results in broadened post-edge features, despite donor-and-acceptor populations comparable to Ca$^{2+}$. We present re-averaged spectra of the MgCl$_2$, CaCl$_2$, and NaCl solutions that provide an explanation of concentration-dependent features that have been found in corresponding experimental measurements.