Observation of Little-Parks Oscillations of the Kinetic Inductance at Low Temperatures Using a GHz Resonator with Two Parallel Superconducting Nanowires1 ANDREY BELKIN, MATTHEW BRENNER, THOMAS AREF, JASEUNG KU, ALEXEY BEZRYADIN, University of Illinois at Urbana-Champaign — Little-Parks (LP) effect manifests the phenomenon of the fluxoid quantization in doubly connected superconductors. Usually it is observed at high temperatures, i.e. slightly below the critical temperature (T_c). We demonstrated that a thin-film Fabry-Perot superconducting resonator with a pair of nanowires inserted at the point of supercurrent antinode can be used to reveal LP effect even at temperatures much lower than T_c. As magnetic field (H) is applied, the Meissner current develops, changing the kinetic inductance of the wires and, correspondingly, the resonance frequency of the resonator and its transmission S_{21} measured at the fixed frequency. The periodicity of the LP effect is revealed as a periodic set of distorted parabolas $S_{21}(H)$ corresponding to the states with different vorticities. The transition from one state to another corresponds to a Little’s phase slip. We suggest a theoretical explanation to the shape of the observed parabolas. We also report a statistical analysis of the jumps between the parabolas.

1This work was supported by DOE Grant No. DO-FG02-07ER46453 and NSF Grant No. DMR-1005645.

Andrey Belkin
University of Illinois at Urbana-Champaign

Date submitted: 02 Dec 2010

Electronic form version 1.4