Particle Behavior at Anisotropically Curved Liquid Interfaces

KATHLEEN McENNIS, CHUAN ZENG, BENNY DAVIDOVITCH, ANTHONY DINSMORE, THOMAS RUSSELL, University of Massachusetts Amherst — A particle bound to an anisotropically curved liquid interface, such as a cylinder or catenoid, cannot maintain a constant contact angle without deforming the interface. Theory suggests that the particles will experience a force that depends on the interfacial shape and migrate to minimize the total interfacial energy. To test these predictions, particles were deposited on top of liquid semi-cylinders of ionic liquid or melted polystyrene confined on chemically patterned surfaces. Particles were also deposited on liquid catenoid structures created by placing a melted polymer film under an electric field. The location of the particles on these structures was observed by optical, confocal, and scanning electron microscopy. The implications for the directed assembly of particles and stability of Pickering emulsions are also discussed.

Kathleen McEnnis
University of Massachusetts Amherst

Date submitted: 18 Nov 2010

Electronic form version 1.4