Microscopic conductivity imaging of the quantum Hall edge states by a microwave impedance microscope KEJI LAI, WORASOM KUNDHIKANJANA, MICHAEL KELLY, ZHI-XUN SHEN, Stanford University, JAVAD SHABANI, MANSOUR SHAYEGAN, Princeton University — Spatially resolved studies of the quantum Hall edge channels are usually challenging because most high mobility two-dimensional electron gas (2DEG) systems are buried underneath the surface. Using a cryogenic microwave impedance microscope, we demonstrate the conductivity mapping of the bulk and edge states in a GaAs/AlGaAs 2DEG. Narrow strips with either metallic or insulating screening properties are observed along edges of the 2DEG. The sizes and positions of these strips as a function of the magnetic fields agree with the self-consistent electrostatic picture. The quantitative local conductivity information provides a complete microscopic description of the evolution through the bulk filling factor $\nu = 2$. The imaging was performed without DC electrodes, vividly manifesting that the quantum Hall edges are equilibrium states and do not depend on externally supplied currents.

Keji Lai
Stanford University

Date submitted: 19 Nov 2010 Electronic form version 1.4