Abstract Submitted for the MAR11 Meeting of The American Physical Society

Degenerate versus semi-degenerate transport in a correlated 2D hole system¹ RICHARD L.J. QIU, XUAN P.A. GAO, Dept. of Physics, Case Western Reserve University, LOREN N. PFEIFFER, KEN W. WEST, Dept. of Electrical Engineering, Princeton University — It has been puzzling that the resistivity of high mobility two-dimensional (2D) carrier systems in semiconductors with low carrier density often exhibits a large increase followed by a decrease when the temperature (T) is raised above a characteristic temperature comparable with the Fermi temperature (T_F) . We find that the metallic 2D hole system (2DHS) in GaAs quantum well (QW) has a linear density (p) dependent conductivity, $\sigma \approx e\mu^*(p-p_0)$, in both the degenerate $(T \ll T_F)$ and semi-degenerate $(T \sim T_F)$ regimes. The Tdependence of $\sigma(p)$ suggests that the metallic conduction (d σ /dT <0) at low T is associated with the increase in μ^* , the effective mobility of itinerant carriers. However, the resistivity decrease in the semi-degenerate regime $(T > T_F)$ is originated from the reduced p_0 , the density of immobile carriers in a two-phase picture. Quantum oscillations in the magneto-resistivity are also found to persist into the semi-degenerate regime in our strongly correlated 2DHS.

¹Supported by NSF grant (DMR-0906415)

Richard L.J. Qiu Dept. of Physics, Case Western Reserve University

Date submitted: 19 Nov 2010

Electronic form version 1.4