Doping evolution of nodal quasiparticles in the cuprate superconductor YBCO via low-temperature thermal conductivity

SAMUEL RENE DE COTRET, J.-PH. REID, N. DOIRON-LEYRAUD, L. TAILLEFER, University of Sherbrooke, Sherbrooke, Canada, B.J. RAMSHAW, R. LIANG, D.A. BONN, W.N. HARDY, University of British Columbia, Vancouver, Canada — The thermal conductivity of the cuprate superconductor YBa$_2$Cu$_3$O$_y$ was measured at temperatures down to $T \sim 50$ mK in magnetic fields up to $H = 15$ T on high-quality single crystals with a hole doping ranging from $p = 0.08$ to $p = 0.18$. The residual linear term at $T \to 0$, a direct measure of the nodal quasiparticle velocities [1], is tracked as a function of doping, and compared to recent, high-resolution ARPES measurements of the Fermi velocity and gap magnitude as a function of doping, in the related cuprate superconductor Bi$_2$Sr$_2$CaCu$_2$O$_8+\delta$ [2].

Samuel Rene de Cotret
University of Sherbrooke, Sherbrooke, Canada