Investigation of radiation pressure shot-noise in a microwave circuit optomechanical system

JENNIFER HARLOW, JILA, University of Colorado and NIST, JOHN TEUFEL, RAYMOND SIMMONDS, NIST, KONRAD LEHNERT, JILA, University of Colorado and NIST

We examine the possibility of measuring the radiation pressure shot-noise of microwave light. When the motion of a nanomechanical oscillator is coupled to the microwave energy stored in a resonant circuit, the oscillator experiences a radiation pressure force. That force must have a random component associated with the quantum nature of the microwave field, a mechanical manifestation of the microwave photon. The variance of this random component increases with increasing circuit excitation power. Until recently, reaching powers where radiation pressure shot-noise would dominate over other random forces was unfeasible due to relatively weak optomechanical coupling and technical power limitations of microwave circuits. However, the recent advent of a mechanical oscillator coupled strongly to a microwave circuit [1] will enable exploration of this regime. We discuss the most favorable circuit parameters and measurement strategy for studying radiation pressure shot-noise.

Jennifer Harlow
JILA, University of Colorado and NIST