Dynamical Jahn-Teller Effect at a Vacancy Center in Graphene

SASHI SATPATHY, MOHAMMAD SHERAFATI, BIRABAR NANDA, University of Missouri, ZORAN POPOVIC, Institute for Nuclear Sciences, Belgrade — We study the substitutional vacancy center in graphene from density-functional LAPW calculations and show that it is magnetic and at the same time forms a dynamical Jahn-Teller center. A net magnetic moment of $2\mu_B$ is found, which is explained in terms of the occupation of the $sp^2\sigma$ dangling bond state and the zero-mode state derived from the π bands. The adiabatic potential surface resulting from the $E \otimes e$ vibronic coupling was computed and subsequently the Schrödinger equation was solved for the nuclear motion of the carbon atoms. Our calculations show the tunneling splitting 3Γ to be about 80 cm$^{-1}$, which is substantially larger than the typical strain fields, leading to a dynamical Jahn-Teller effect (JTE). This explains the puzzling behavior of why in the STM measurements a symmetric carbon triangle is observed around the vacancy, while at the same time we predict the splitting of the vacancy-induced electron states by the static JTE in spite of the triangular symmetry.

1Work supported by the US Department of Energy