Transport in Coherent Quantum Hall Bilayers1 \textsc{Allan Macdonald}, \textsc{Dmytro Pesin}, The University of Texas at Austin, Austin, TX — We develop an approach to describe transport in bilayer quantum Hall systems in which coherence is established spontaneously between layers. We use Landauer-Buttiker theory with phenomenological parameters which can be fit to experimental data to describe quasiparticle transport in bilayers with strong coherence. We use the above approach to calculate two-probe conductances for various experimental configurations. We also apply the formalism to describe high-current transport in a bilayer with a time-dependent condensate. To describe the transition from strong to weak coherence, we use a phenomenological single “relaxation length” ansatz for contact-to-contact transmission coefficients. As an application, we consider longitudinal drag, and find a good agreement with experiment in the regime of well-developed Quantum Hall Effect.

1Supported by Welch Foundation grant F1473, and by the ARO MURI on bioassembled nanoparticle arrays