The \(p, q \)-binomial distribution applied to the Ising model

PER HÅKAN LUNDOW, ANDERS ROSENGREN, KTH — Monte Carlo simulations have shown that the \(p, q \)-binomial distribution closely fits the magnetisation distribution for the \(d \)-dimensional Ising model at all temperatures when \(d > 4 \). It also fits well for some temperatures near \(T_c \) for \(d = 2, 3 \) and especially so for \(d = 4 \). At high and low temperatures, away from \(T_c \), the \(p, q \)-distribution always fits extremely well. However, it appears very difficult to determine how the parameters \(p \) and \(q \) depend on the temperature. From high and low temperature series expansions we can get partial results on their temperature dependence. Near \(T_c \) for \(d = 5 \) we have approximately that \(p = 1 - 0.0736/L^5 \) and \(q = 1 - 9.87/L^5 \) whereas for \(d < 5 \) the linear coefficient of \(q \) grows logarithmically. We show numerically how the parameters behave near \(T_c \) with increasing \(d \).

Per Håkan Lundow
KTH

Date submitted: 22 Nov 2010

Electronic form version 1.4