Complex edge effects in graphene nanoribbons due to hydrogenation1 BIPLAB SANYAL, Associate Professor, Uppsala University, Sweden, SUMANTA BHANDARY, Ph.D. student, Uppsala University, Sweden, MIKHAIL KATSNELSON, Professor, Radboud University Nijmegen, The Netherlands, OLLE ERIKSSON, Professor, Uppsala University, Sweden — We have performed density-functional calculations as well as employed a tight-binding theory, to study the effect of hydrogenation of zigzag graphene nanoribbons (ZGNR). We show that each edge C atom bonded with 2 H atoms open up a gap and magnetism collapses for small widths of the nanoribbon. However, a re-entrant magnetism accompanied by a metallic electronic structure is observed from eight rows and thicker nanoribbons. The electronic structure and magnetic state are quite complex for this type of termination, with sp^3 bonded edge atoms being nonmagnetic whereas the nearest neighboring atoms are metallic and magnetic. We have also evaluated the phase stability of several thicknesses of ZGNR and demonstrate that sp^3 bonded edge atoms with 2 H atoms at the edge can be stabilized over 1 H atom terminated edge at high temperatures and pressures.

1We gratefully acknowledge financial support from the Swedish Research Council, Carl Tryggers Foundation, STINT, the EU-India FP-7 collaboration under MONAMI, and a KOF grant from Uppsala University.

Biplab Sanyal
Associate Professor, Uppsala University, Sweden

Date submitted: 19 Nov 2010
Electronic form version 1.4