Abstract Submitted for the MAR11 Meeting of The American Physical Society

Elastic and inelastic neutron scattering study on (CuCl)LaTa₂O₇ SEUNGHUN LEE, KAZUKI IIDA, University of Virginia, ATSUSHI KITADA, YOSHIHIRO TSUJIMOTO, HIROSHI KAGEYAMA, Kyoto University, BELLA LAKE, HZB, SEIKO KAWAMURA, J-PARC, KAZUHISA KAKURAI, JAEA, YIMING QIU, MARK GREEN, NCNR, UNIVERSITY OF VIRGINIA TEAM, KYOTO UNIVERSITY COLLABORATION, HELMHOLTZ-ZENTRUM BERLIN COLLABORATION, JAPAN ATOMIC ENERGY AGENCY COLLABORATION, NIST CENTER FOR NEUTRON RESEARCH COLLABORATION — A quasitwo-dimensional frustrated spin system, $(CuCl)La(Nb_{1-x}Ta_x)_2O_7$, shows a quantum phase transition upon doping of Ta ions from a singlet state to an ordered state at $x \sim 0.4$. (CuCl)LaNb₂O₇ has been reported as the first ferromagnetically coupled Shastry-Sutherland singlets with the triplet excitations centered at 2 meV. We report elastic and inelastic neutron scattering measurements on a powder sample of (CuCl)LaTa₂O₇ with and without an magnetic field. Our results show that upon cooling this system undergoes a magnetic ordering below 7 K with a characteristic wave vector of $Q = (1/2 \ 0 \ 1/2)$. The magnetic excitations in the ordered phase are dominated by a nearly dispersionless mode centered at 2 meV similar to the triplet excitations observed in (CuCl)LaNb₂O₇. Under field, however, the 2 meV mode in (CuCl)LaTa₂O₇ splits into two modes, clearly indicating that it is a spin wave expected for an ordered state.

> Seunghun Lee University of Virginia

Date submitted: 19 Nov 2010 Electronic form version 1.4