MAR11-2010-004834

Abstract for an Invited Paper for the MAR11 Meeting of the American Physical Society

Orbital Reflectometry and the Electronic Structure of Oxide Interfaces

EVA BENCKISER, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart

The occupation of *d*-orbitals has a key influence on the physical properties of transition-metal (TM) oxides.¹ Due to the strong hybridization with neighboring oxygen ions, the electronic structure is very sensitive to changes in the TM-oxygen bond distances induced by strain and/or by the chemical bonding to other ions with different electronic configuration. Both effects might be important in oxide heterostructures,² but thus far it has been difficult to probe atomic-scale modulations of the orbital occupation in a quantitative manner.³ We present results from polarized soft x-ray resonant reflectivity, which demonstrate that it is possible to derive quantitative, spatially resolved orbital polarization profiles. We show that this method is sensitive enough to resolve differences of ~ 3% in the occupation of Ni e_g orbitals in adjacent atomic layers of a LaNiO₃-LaAlO₃ superlattice, and the experimental findings are in good agreement with electronic-structure calculations. The possibility to quantitatively correlate theory and experiment on the atomic scale opens up new perspectives for orbital physics in oxide heterostructures.

¹Tokura, Y. & Nagaosa, N. Science **288**, 462-468 (2000). ²Han, M. J., Marianetti, C. A. & Millis, A. J. Phys. Rev. B **82**, 134408 (2010). ³Chakhalian, J. *et al.* Science **318**, 1114-1117 (2007).