Spin-dependent intergranular hopping transport in very thin highly spin-polarized CoS$_2$ thin films1 M. MANNO, A. GUNAWAN, A. BARUTH, R. FRAKIE, A. MKHOYAN, C. LEIGHTON, University of Minnesota, DEPARTMENT OF CHEMICAL ENGINEERING AND MATERIALS SCIENCE COLLABORATION — The Co$_{1-x}$Fe$_x$S$_2$ alloy system has been shown to exhibit high, composition tunable, spin polarization ($-56 \% < P < +85 \%$) in bulk, demonstrating great promise for fundamental studies in spintronics. Incorporation in heterostructures requires reliable thin film deposition routes, which have recently been developed. We present here a detailed study of the thickness (t) dependence of the structural, magnetic, and electronic properties of polycrystalline CoS$_2$ thin films (70 – 1600 Å). As t is decreased, we observe a suppression in magnetic properties accompanied by a metal-insulator transition. A distinct 3D to 2D crossover is evident in the conductance-voltage curves and intergranular tunneling magnetoresistance. At t of order 70 Å we observe granular metal conduction, in the presence of a Coulomb charging penalty. We demonstrate quantitative agreement between experiment and proposed models. The very thin film data are understood in terms of enhanced grain boundary resistance, due to S accumulation, which is evidenced via several modes of structural characterization.

1Work supported by NSF MRSEC

Michael Manno
University of Minnesota

Date submitted: 19 Nov 2010