Nanoscale control at the LaAlO$_3$/SrTiO$_3$ Interface grown on LSAT1 DANIELA BOGORIN2, CHENG CEN, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, CHUNG WUNG BARK, CHANG BEOM EOM, Department of Materials Science, University of Wisconsin-Madison, Madison, WI 53706, JEREMY LEVY, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 — The two-dimensional electron gas (2DEG) that forms at the interface between two semiconductors or between a semiconductor and oxide is currently the basis for some of the most useful electronic devices. We are able to control the 2DEG interface between LaAlO$_3$/SrTiO$_3$ with nanoscale precision and create transistors, nanodiodes and other nanostructures. Future scaling of oxide nanoelectronics requires scaling to wafer sizes larger than what can be provided from SrTiO$_3$. (LaAlO$_3$)$_{0.3}$–(Sr$_2$AlTaO$_3$)$_{0.7}$ (LSAT) substrates can allow for coherently strained LaAlO$_3$/SrTiO$_3$ heterostructures to be created. A sharp insulator to metal transition occurs at 8 uc LaAlO$_3$ thicknesses, in contrast to what is observed for unstrained SrTiO$_3$ substrates. We describe the properties of nanoscale structures created at the 2DEG interface of LaAlO$_3$/SrTiO$_3$ grown on LSAT wafers and compare them with structures grown on bulk SrTiO$_3$ substrates.

1Work supported by NSF DMR-0704022 (J.L.), DARPA W911NF-09-10258 (J.L.), the Fine Foundation (JL), NSF DMR-0906443 (C.B.E.) and David and Lucile Packard Fellowship (C.B.E.)

2currently at Oak Ridge National Laboratory, Oak Ridge, TN 37831

Daniela Bogorin
Department of Physics and Astronomy,
University of Pittsburgh, Pittsburgh, PA 15260

Date submitted: 24 Nov 2010

Electronic form version 1.4