Electron transfer and relaxation dynamics in heterovalent ZnSe/GaAs quantum well structures AMIT DONGOL, HANS PETER WAGNER, Department of Physics, University of Cincinnati, OH-45221, USA — We investigate the electron transfer and relaxation dynamics in heterovalent ZnMgSe/ZnSe quantum wells (QW’s) grown on GaAs using the nonlinear optical method of three-beam degenerate four-wave-mixing (FWM). We use ultra-short (90 fs) laser pulses with non-collinear wave-vectors \mathbf{k}_1, \mathbf{k}_2 and \mathbf{k}_3 at a center wavelength of 441 nm (\sim2.81 eV) which is resonantly tuned to the heavy hole exciton transition energy at 25 K. In the experiment the time coincident strong pump pulses \mathbf{k}_1 and \mathbf{k}_2 creates both an exciton density grating in the QW and an electron-hole pair grating in the GaAs while the delayed weak pulse \mathbf{k}_3 simultaneously probes the exciton lifetime T_1 as well as the electron grating injection time T_t from the substrate into the QW. Intensity dependent experiments reveal that the diffraction efficiency due to the electron grating increases faster with increasing \mathbf{k}_1 and \mathbf{k}_2 pulse intensities than the FWM efficiency due to the generated exciton density grating. This behavior which is attributed to exciton bleaching at high intensities enables the discrimination of times T_1 and T_t, both being in the order of a few tens of picoseconds.

Amit Dongol
Department of Physics, University of Cincinnati, OH-45221, USA

Date submitted: 19 Nov 2010

Electronic form version 1.4