Structural and Magnetic Interplay in Molecule-based Magnets
with Photocontrollable Properties1 Y.M. CALM, E.S. KNOWLES, D.M. PAJEROWSKI, A.M. ZIEGLER, M.W. MEISEL, Dept. Phys. NHMFL, Univ. Florida, H. PHAN, M. SHATRUK, Dept. Chem., Florida State Univ., M.J. ANDRUS, M.F. DUMONT, D.R. TALHAM, Dept. Chem., Univ. Florida — Understanding the cooperative effects, such as electron-lattice interactions, in molecule-based magnetic coordination complexes possessing photoinduced phase transitions is an important step to being able to rationally tune the variables governing the process.2 Specifically, variable temperature FTIR spectroscopy and magnetometry have been used to explore the temperature and photocontrollable spin transitions in Co-Fe Prussian blue analogues, $A_jCo_k[Fe(CN)_{6}\ell]\cdot nH_2O$, where A is an alkali ion, and in new Fe spin-crossover complexes. By studying nanoparticles3 and heterostructures,4 the data provide insight into the roles played by restricted lattice geometries and strain-pressure effects.

1Supported by NSF DMR-0701400 (MWM), CHE-0911109 (MS), DMR-1005581 (DRT), DMR-0851707 (UF Physics REU for AMZ), and DMR-0654118 (NHMFL).
3M.F. Dumont et al., Inorg. Chem., submitted.