Use of embedded metal nanoparticles as photothermal heaters in polymer nanocomposites

SOMSUBHRA MAITY, JASON BOCHINSKI, LAURA CLARKE, NC State University — Embedded metallic nanoparticles within polymer nanofibers can internally heat and thus thermally-modify (soften, melt, or bond) polymer composites when irradiated with visible light via excitation and non-radiative relaxation of the nanoparticle surface plasmon resonance. Because the heating originates at the nanoparticle surface and propagates outward, a strong spatial temperature gradient exists. We discuss a non-contact, temperature-sensitive fluorescence technique to determine local temperature within the composite, which utilizes changes in the emission spectrum of perylene,1 in addition to determining temperature from changes in polymer morphology. The efficacy of plasmonic heating in different morphologies (nanofibers/films) as well as its effect on material mechanical properties when heated between T_g and T_m is discussed. The spatial specificity of the photothermal heating as determined by the nanoparticle location represents a unique nanoprocessing tool.

1Bur, A. J.; Vangel, M. G.; Roth, S. \textit{Applied Spectroscopy} \textbf{2002}, 56, (2), 174-181.

Somsuhbra Maity
NC State University

Date submitted: 27 Dec 2010
Electronic form version 1.4