Abstract Submitted for the MAR11 Meeting of The American Physical Society

Commensurate-Incommensurate Transition in ⁴He Monolayer Adsorbed on a C₆₀ Molecule HYEONDEOK SHIN, YONGKYUNG KWON, School of Physics, Konkuk University — Path-integral Monte Carlo calculations have been performed to study adsorption of 4 He on a single C₆₀ fullerene molecule. In order to account for helium corrugations on the molecular surface, the sum of all interatomic pair potentials between a carbon atom and a ⁴He atom is used for the ⁴He-C₆₀ interaction. The radial density distributions reveal a layer-by-layer growth of ⁴He with the first adlayer being located at a distance of ~ 6.2 Å from the center of a C_{60} molecule. This first layer is found to exhibit various quantum states as the number of adsorbed ⁴He atoms N varies. For N=32 the helium layer shows a commensurate solid structure with twenty helium atoms being localized on the tops of the hexagon centers of the C_{60} surface and the other twelve atoms above the pentagon centers. As more ⁴He atoms are added, a commensurate-incommensurate transition is observed. After going through various domain wall states the first layer is crystallized into an incommensurate solid for $N \sim 52$. We find that solid states observed for N=32,44, and 48 do not show any superfluid response even below 0.2 K while domain-wall fluids formed with 45 to 47 ⁴He atoms show significant superfluid fractions below 0.6 K. Finally different quantum states oberseved in the first ⁴He layer around a C_{60} are compared with phase diagrams determined for the helium monolayer on a graphite surface.

> Hyeondeok Shin School of Physics, Konkuk University

Date submitted: 19 Nov 2010

Electronic form version 1.4