Commensurate-Incommensurate Transition in 4He Monolayer Adsorbed on a C$_{60}$ Molecule

HYEONDEOK SHIN, YONGKYUNG KWON,
School of Physics, Konkuk University — Path-integral Monte Carlo calculations have been performed to study adsorption of 4He on a single C$_{60}$ fullerene molecule. In order to account for helium corrugations on the molecular surface, the sum of all interatomic pair potentials between a carbon atom and a 4He atom is used for the 4He-C$_{60}$ interaction. The radial density distributions reveal a layer-by-layer growth of 4He with the first adlayer being located at a distance of $\sim 6.2 \, \text{Å}$ from the center of a C$_{60}$ molecule. This first layer is found to exhibit various quantum states as the number of adsorbed 4He atoms N varies. For $N=32$ the helium layer shows a commensurate solid structure with twenty helium atoms being localized on the tops of the hexagon centers of the C$_{60}$ surface and the other twelve atoms above the pentagon centers. As more 4He atoms are added, a commensurate-incommensurate transition is observed. After going through various domain wall states the first layer is crystallized into an incommensurate solid for $N \sim 52$. We find that solid states observed for $N=32, 44$, and 48 do not show any superfluid response even below 0.2 K while domain-wall fluids formed with 45 to 47 4He atoms show significant superfluid fractions below 0.6 K. Finally different quantum states observed in the first 4He layer around a C$_{60}$ are compared with phase diagrams determined for the helium monolayer on a graphite surface.

Hyeondeok Shin
School of Physics, Konkuk University

Date submitted: 19 Nov 2010
Electronic form version 1.4