Non-equilibrium ballistic phonon transport in microstructures
JARED HERTZBERG, OBAFEMI OTELAJA, RICHARD ROBINSON
Cornell University — We demonstrate a method to locally excite and detect phonon modes in silicon microstructures. Decay of quasiparticles injected into an adjacent superconducting film excites phonons in a non-thermal spectral distribution [1]. Phonons of frequency of order 100 GHz are detected by the excitations they cause in a second superconducting film, after ballistically traversing microstructures of 10 to 50 micron dimension. Measurements are made at temperatures of 0.3 to 1.2 K. Such a device advances the goal of building a nanoscale phonon spectrometer to study acoustic confinement and surface scattering effects. This work is supported by KAUST (KUS-C1-018-02), NSF (DMR 0520404), and DOE (DE-SC0001086).

Jared Hertzberg
Cornell University

Date submitted: 27 Dec 2010
Electronic form version 1.4