Abstract Submitted for the MAR11 Meeting of The American Physical Society

Hall magnetometry measurements of the susceptibility of variants of Mn₁₂-ac¹ PRADEEP SUBEDI, A.D. KENT, NYU, B. WEN, M.P. SARACHIK, CCNY, Y. YESHURUN, Bar-Illan, A.J. MILLIS, Columbia U, S. MUKHERJEE, G. CHRISTOU, UF-Gainsville — The temperature dependence of the inverse magnetic susceptibility of both Mn_{12} -ac and Mn_{12} -ac-MeOH is found to give finite temperature intercepts, indicating a ferromagnetic phase at low temperature [1, 2]. A magnetic field applied transverse to the Ising axis suppresses the Curie temperature, T_{CW} , to a T = 0 quantum critical point. However, the decrease of T_{CW} with transverse field, H_{\perp} , in Mn₁₂-ac does not agree with mean field calculations performed with a spin Hamiltonian that includes dipolar interactions between molecules and H_{\perp} effects. We attribute the pronounced suppression of T_{CW} of Mn_{12} -ac to the effect of random fields arising from a distribution of molecular easy axis tilts due to ligand disorder [1]. Mn_{12} -ac-MeOH is of interest in this regard because it appears to have no ligand disorder. We discuss these experiments as well as ongoing studies of Mn_{12} -toluate, a faster relaxing variant of Mn_{12} , which has a lower effective anisotropy barrier that permits the study of the susceptibility in larger H_{\perp} at very low temperature. [1] Wen et.al PRB **82**, 014406 (2010) [2] Li et.al PRB **82**, 174405 (2010)

¹Supported by NSF-DMR-0506946,DMR-0451605,DMR-0705847,CHE-0910472, ARO W911NF-08-1-0364 and German Research Foundation

> Pradeep Subedi NYU

Date submitted: 27 Dec 2010

Electronic form version 1.4