Analytical and numerical analysis of a generic cloaking system

PATTABHIRAJU MUNDRU, DENTCHO GENOV, Louisiana Tech University —

We present a technique to realize a multi-shell generic cloaking system. By considering specific geometrical and material properties for the shells around the object, we were able to achieve a transparency conditions independent of object’s optical properties in quasi-static regime. A complete suppression of dipolar scattering is demonstrated for an arbitrary object enclosed in such a system. We propose tunable-low loss realistic shell designs based on composite media and the effect of dispersion on the overall scattering cross-section is evaluated. Full wave analytical and numerical simulations based on the transparency conditions obtained in the quasi-static limit are performed. It is shown that strong reduction of the scattering by a factor of up to 10^3 can be achieved across the entire optical spectrum.

1NSF(2010)-PFUND-202. Louisiana Board of Regents under contract number LEQSF (2007-12)- ENH-PKSF1-PRS-01.