Fluctuation-induced forces in strongly anisotropic critical systems

M. BURGSMÜLLER, H.W. DIEHL, Fakultät für Physik, Universität Duisburg-Essen, 47048 Duisburg, Germany, M.A. SHPOT, Institute for Condensed Matter Physics, 79011 Lviv, Ukraine — Strongly anisotropic critical systems have two (or more) correlation lengths ξ_α and ξ_β that diverge as nontrivial powers $\xi_\alpha \sim \xi_\beta^\theta \to \infty$ upon approaching criticality. We investigate the effective (Casimir-like) forces that are induced between two confining parallel boundary planes at a distance L by fluctuations in such systems at bulk criticality. Two fundamentally distinct orientations of boundary planes must be distinguished: parallel, for which the planes are parallel to all of the available $1 \leq m < d$ α-directions, and perpendicular, for which they are perpendicular to an α-direction, but parallel to all other α- and β-directions. Using a RG approach, we show that universal Casimir amplitudes $\Delta_{BC_{\parallel,\perp}}$, depending on both the large-scale boundary condition (BC) at both plates and the type of surface plane orientation, can be introduced to characterize the asymptotic L-dependence of the critical fluctuation-induced force. This varies as $\mathcal{F} \sim -\frac{\partial}{\partial L} \Delta_{BC_{\parallel,\perp}} L^{-\xi_{\parallel,\perp}}$, where the proportionality constant is nonuniversal. To corroborate these findings, $O(n)$ ϕ^4 models with m-axial Lifshitz points are investigated below their upper critical dimension $d = 4 + m/2$. Explicit one- and two-loop results for $\Delta_{BC_{\parallel,\perp}}$ are presented for both orientations and periodic or Dirichlet-like boundary conditions, along with large-n results.

Hans Werner Diehl

Fakultät für Physik, Universität Duisburg-Essen, 47048 Duisburg, Germany

Date submitted: 27 Dec 2010

Electronic form version 1.4