Extinction of ferromagnetism in HOPG by thermal annealing

XIAOCHANG MIAO, ARTHUR HEBARD, Department of Physics, University of Florida, Gainesville, FL 32611, SEFAATTIN TONGAY, BILL APPLETON, Nanoscience Institute for Medical and Engineering Technologies, University of Florida, Gainesville, FL 32611 — Observations of ferromagnetism (FM) in highly ordered pyrolytic graphite (HOPG) have generated vigorous research activity to clarify its origin, especially when transition metals are known to be absent. We report that the ferromagnetism of pristine HOPG samples as measured by hysteretic magnetization loops can be diminished and eventually extinguished with sufficiently long high vacuum anneals at temperatures greater than 2000 °C. Concomitant with the extinction of ferromagnetism, we observe an anneal-induced increase in grain size (accompanied by possible edge reconstruction) confirmed by XRD measurement and improved transport properties, including lower in-plane and out-of-plane resistance, higher electron and hole mobility and improved charge compensation. The implied anneal-induced reduction of defects and vacancies suggests that the FM of pristine HOPG is correlated with localized states located at zigzag edges, vacancies and related defects.

1Work supported ONR-00075094 and NSF-1005301

Xiaochang Miao
Department of Physics, University of Florida, Gainesville, FL 32611

Date submitted: 19 Nov 2010

Electronic form version 1.4