Formation and electrical characterization of directed self-assembled Ge/Si quantum dot1 DONGYUE YANG, U. Pittsburgh, CHRIS PETZ, U. Virginia, JEREMY LEVY, U. Pittsburgh, JERROLD FLORO, U. Virginia — Directed self-assembly of sub-10 nm Ge islands is a candidate for producing laterally coupled quantum dot molecules with geometrically-defined spin exchange couplings. The islands are created by the nucleation of Ge islands on nanoscale SiC templates defined by direct-write electron-beam lithography.2 Ge islands are coupled through ohmic contacts to the Si capping layer, and geometries can be defined that are suitable for either vertical or lateral transport. We describe low-temperature magneto-transport measurements on individual and small arrays of Ge islands grown on semi-insulating silicon substrates.

1This work is supported by DOE DE-FG02-07ER46421.