Density functional theory (DFT) is the most widely employed electronic structure method due to its favorable scaling with system size and accuracy for a broad range of molecular and condensed-phase systems. The advent of massively parallel supercomputers have enhanced the scientific community’s ability to study larger system sizes. Ground state DFT calculations of systems with $O(10^3)$ valence electrons can be routinely performed on present-day supercomputers. The performance of these massively parallel DFT codes at the scale of 1 - 10K execution threads are not well understood; even experienced DFT users are unaware of Amdahl’s Law and the non-trivial scaling bottlenecks that are present in standard $O(N^3)$ DFT algorithms. The GPAW code was ported an optimized for the Blue Gene/P. We present our algorithmic parallelization strategy and interpret the results for a number of benchmark tests cases. Lastly, I will describe opportunities for computer allocations at the Argonne Leadership Computing Facility.

1This work has been supported by the Academy of Finland (Project 110013) , Tekes MASI-program, Danish Center for Scientific Computing, Lundbeck Foundation, Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.

Nichols Romero
Argonne National Laboratory

Date submitted: 19 Nov 2010
Electronic form version 1.4