On the Pairing Instability in Rutile MO$_2$ L. ANDREA SALGUERO, CRAIG J. FENNIE, School of Applied and Engineering Physics, Cornell University — The metal-dioxide family of compounds such as TiO$_2$, SnO$_2$, VO$_2$, NbO$_2$, and WO$_2$ have been of much recent interest for reasons as diverse as understanding novel correlated electron physics to designing new photo/electro-catalysis. All can be thought of as forming in a prototypical tetragonal “rutile” structure, yet members with unpaired d1 and d2 electrons undergo a structural phase transition to a monoclinic, “distorted rutile,” structure. In some cases this metal pairing transition accompanies a metal to insulator transition, the precise role, however, is still not clear. Here we present a comparative first-principles study of the lattice instabilities in d1 and d2 MO$_2$ rutile, paying particular attention to the d2 system WO$_2$, which remains metallic even in the distorted phase. We calculate the phonon dispersion in the tetragonal prototypical structure. Using unstable high symmetry modes as a guide, we calculate the energy surface around the high-symmetry structure and perform full structural relaxations in the distorted ground states. We elucidate the interplay between the electronic structure and the pairing transition and discuss the possibility of controlling it with strain.

L. Andrea Salguero
School of Applied and Engineering Physics, Cornell University

Date submitted: 19 Nov 2010

Electronic form version 1.4