Extended interface states enhance valley splitting in Si/SiO\textsubscript{2} 1 ANDRE SARAIVA, BELITA KOILLER, U. F. Rio de Janeiro, MARK FRIESEN, U. of Wisconsin — Interface disorder and its effect on valley degeneracy in the conduction band present an important theoretical challenge for operating spin qubit in silicon. Here, we demonstrate and investigate a counterintuitive effect occurring at Si/SiO\textsubscript{2} interfaces. By applying tight binding methods, we show that intrinsic interface states can hybridize with conventional valley states to produce an anomalously large ground state energy gap. Such hybridization effects have not previously been explored in detail for valley splitting. We find that the splitting can be enhanced by disorder in the chemical bonds at the interface, in agreement with recent experiments.

1This work was supported in part by ARO and LPS, by NSF and CAPES. BK thanks CNPq, FUJB, INCT on Quantum Information and FAPERJ.