Plausible loop currents in the GdBCO pseudogap phase

C. BOEKEMA, San Jose State University, T. SONGATIKAMAS, Santa Clara University, M.C. BROWNE, San Jose State University — For the cuprate pseudogap phase, Varma [1] predicts loop currents above T_c. We search for fields near 100 Oe, created by such currents in GdBa$_2$Cu$_3$O$_{7-\delta}$ (GdBCO). Using MaxEnt-Burg (ME) we analyze zero-field (ZF) muon-spin-rotation (μSR) data of underdoped (δ_1; T_c = 81 K) and optimal doped (δ_0; T_c = 93 K) GdBCO. [2] ME-μSR applied to ZF-GdBCO data yields T-dependent signals at 0-MHz (f_0) and 0.3-MHz (f_1) and hints of 1.4-MHz signals. To cancel any systematic (f_1) effect, we analyze $DS(t,T) = S(t,T>T_c) - S(t,T<T_c)$. This ME-Burg analysis of GdBCO(δ_0 & δ_1) indicates weak signals near 1.4 MHz above T_c (and f_1 disappears). These ME-peaks occur at \sim1.3 MHz (95 Oe) for GdBCO(δ_1) and \sim1.5 MHz (110 Oe) for GdBCO(δ_0). These μSR signals, plausibly due to fields created by loop currents, appear only above T_c. Below T_c, only ME background noise exist in $DS(t,T)$ transforms. The \sim1.4-MHz peak intensity to background ratio at its maximum is \sim5 for GdBCO(δ_1) and \sim4 for GdBCO(δ_0) at \sim10 degrees above T_c. Validating predicted loop currents is essential for understanding the pseudogap phase. Research supported by REU NSF & DOE LANL. [1] CM Varma, Phys Rev Lett 83 (1999) 3538; [2] T Songatikamas et al, J Supercond & Novel Magn 23 (2010) 793.