Self-optimizing Kohn-Sham hybrid functional ISAAC TAMBLYN, Molecular Foundry, LBNL, ROI BAER, Hebrew University, Jerusalem, LEEOR KRONIK, Weizmann Institute of Science, Israel, JEFFREY NEATON, Molecular Foundry, LBNL — Recent work using range-separated hybrid functionals has confirmed the importance of including long-range exchange in treatments of phenomena such as charge transfer reactions. Using a self-optimizing [1,2] form of the BNL [3] functional, we present results for structural, electronic, and thermochemical properties of a large set of molecules (including the G2 and G3 test sets). The success of this approach, as well as its ability to describe reaction barriers, will be discussed.


Isaac Tamblyn
Molecular Foundry, LBNL

Date submitted: 19 Nov 2010

Electronic form version 1.4