Spin accumulation in Fe/MgO/Si heterostructures

We report on spin injection experiments at Fe/MgO/Si interfaces using all electrical injection and detection. MgO is a promising magnetic tunnel junction material, and its incorporation with Si-based spintronics has only recently been reported in degenerately doped Si (n ~ 10^{20} cm^{-3}) [1]. We focus here on spin accumulation under the injecting contact for much lower n-doping levels by measuring the Hanle effect in a standard 3-terminal scheme where injection and detection are done using the same contact. The Fe/MgO spin injector was sputter deposited onto various n-doped Si bulk substrates using a variety of different substrate temperatures. The best tunnel barriers were obtained when the MgO was deposited at 70°C and annealed in-situ before Fe deposition. Fits to Hanle curves using the drift-diffusion model for Si samples with n=4x10^{18} cm^{-3} yield spin lifetimes \(\tau_s = 0.28 \) ns up to 30 K and a spin diffusion length \(L_s = \sqrt{D\tau_s} \) of 0.65 \(\mu \)m (the diffusion constant \(D \) is obtained from the mobility assuming degenerate statistics). We determine the dependence on n, and comment on the potential differences between SOI and bulk Si wafer transport channels. [1] T. Sasaki, et al., Appl. Phys. Exp. 2 (2009).

This work was supported by ONR and core programs at NRL.

Aubrey Hanbicki
Naval Research Laboratory

Date submitted: 03 Feb 2011

Electronic form version 1.4