Spectral functions across the Metal-Insulator transition in the disordered 2D Hubbard model

KARIM BOUADIM, NGANBA MEETEI, YEN LEE LOH, NANDINI TRIVEDI, Ohio State University — We study the metal-insulator transition in the repulsive disordered 2D Hubbard model [1,2] using Determinant Quantum Monte Carlo (DQMC). We calculate the spin-spin and current-current correlations to learn about the nature of the conducting and insulating phases. We also obtain local spin-dependent spectroscopic properties, using the maximum entropy method, to understand the role of disorder on the transition in this highly correlated fermion system. We discuss implications of our results for scanning tunneling spectroscopy and dynamical conductivity experiments [3].


Supported by DOE Grant No. DE-FG02-07ER46423 and NSF Grant No. DMR-0907275. We acknowledge computational support from Ohio Supercomputing Center.

Karim Bouadim
Ohio State University

Date submitted: 26 Nov 2010
Electronic form version 1.4