Temperature dependence of the zero-bias anomaly in the two-site Anderson-Hubbard model

R. WORTIS, W.A. ATKINSON, Trent University — Experiments on disordered strongly correlated electron systems show zero-bias anomalies which are not consistent with either of the two prevailing pictures, by Altshuler and Aronov and by Efros and Shklovskii. Numerical work on the two-dimensional Anderson-Hubbard model shows a zero-bias anomaly with a number of unique features. It has recently been shown that a zero-bias anomaly with many of the same features occurs in an ensemble of two-site Anderson-Hubbard systems. The simplicity of this system allows direct understanding of the mechanism of the anomaly. Here, the temperature dependence of this anomaly is explored. A novel feature is the existence of a temperature driven zero-bias anomaly which appears even in the atomic limit and augments the kinetic energy driven one in the presence of hopping.

1Research supported by the National Science and Engineering Research Council (NSERC) of Canada.