Optical characterization of p-doped InP epitaxial layers in mid and far infrared region

R.C. JAYASINGHE, Y.F. LAO, A.G.U. PERERA, Georgia State University, M. HAMMAR, Royal Institute of Technology, Kista, Sweden, C.F. CAO, Chinese Academy of Sciences, Shanghai, China, H. WU, Zhejiang University, Hangzhou, China — The optical properties of p-doped Indium Phosphide (InP) epitaxial thin films with 1, 3, and 24×10^{18} cm$^{-3}$ carrier concentrations were investigated by infrared reflection, transmission, and absorption measurements in 5 - 40 µm wavelength range. The absorption spectra were modeled by complex dielectric function using the classical Lorentz–Drude model. The phonon absorption in InP was modeled using eight Lorentzian oscillators. This method gives a straightforward approach for modeling the experimental absorption spectra when compared to the two-phonon absorption spectroscopy technique. The calculated spectra are in a good agreement with experimental spectra. The effects of doping on fitting parameters are also investigated.

This work was supported in part by the US Army Research Office under Grant No. W911NF-08-1-0448 monitored by Dr. William Clark and Georgia Research Alliance under grant GRAUP.