Electronic Transport in Ion Gel-Gated Strontium Titanate

MEN YOUNG LEE, JAMES R. WILLIAMS, DAVID GOLDHABER-GORDON, Stanford University, SIPEI ZHANG, C. DANIEL FRISBIE, University of Minnesota, BHARAT JALAN, JUNWOO SON, SUSANNE STEMMER, UC Santa Barbara — In recent years much attention has been focused on the structure and properties of two-dimensional electron liquids (2DEL) in complex oxide heterostructures and delta-doped layers. We report on the fabrication and measurements of mesoscopic devices of metal oxides, with focus given to an electric field-induced 2DEL at the surface of undoped strontium titanate (STO). We describe the design and fabrication of field-effect structures, gated with an ionic gel, and show the measurements of induced swings of charge carrier density in STO. Other transport properties of the 2DEL are studied by magneto-transport measurements at low temperature.

Studies of 2DELs in oxides were supported by MURI program of the ARO (W911NF-09-1-0398). Development of electrolytic gating was supported by the DOE, Office of Basic Energy Sciences as part of an Energy Frontier Research Center (DE-SC0001060).