Momentum-Space Dichotomy in the Metal-Insulator Transition in doped EuO DANIEL SHAI, ALEXANDER MELVILLE, JOHN HARTER, ERIC MONKMAN, DAWEI SHEN, DARRELL SCHLOM, KYLE SHEN, Cornell University — EuO possesses a wide variety of remarkable properties, most which can be accessed only upon carrier doping. In addition to its large ferromagnetic moment \(S = 7/2 \), doped EuO exhibits a metal-insulator transition with a change in resistivity of over \(10^{13} \) and highly spin polarized carriers. Furthermore, the ferromagnetic Curie temperature can be enhanced from 69 K in undoped EuO to over 200 K in carrier doped EuO. We present angle-resolved photoemission studies of \(\text{Eu}_{1-x}\text{Gd}_x\text{O} \) thin films which elucidate the electronic structure and mechanism of the metal-insulator transition. Our ARPES studies verify that the exchange coupling between the Eu 4f moments and the delocalized Eu 5d states pushes the bottom of the majority-spin conduction band through \(E_F \) below \(T_C \). We also reveal a surprising dichotomy between the delocalized carriers at the Brillouin zone boundary below \(T_C \), and localized carriers around the zone center above \(T_C \) which are responsible for the respective low-temperature ferromagnetic metallic and high-temperature paramagnetic semiconducting behaviors observed in transport measurements.

Daniel Shai
Cornell University

Date submitted: 19 Nov 2010

Electronic form version 1.4