Abstract Submitted
for the MAR11 Meeting of
The American Physical Society

Bulk-like electronic structure at the surface of epitaxial
La$_{1-x}$Sr$_x$MnO$_3$ films

ERIC MONKMAN, CAROLINA ADAMO, DANIEL SHAI,
DAWEI SHEN, JOHN HARTER, Cornell University, ILYA ELFIMOV, University
of British Columbia, DARRELL SCHLOM, KYLE SHEN, Cornell University — We
present direct measurements of the electronic structure of La$_{1-x}$Sr$_x$MnO$_3$ (LSMO)
using a combined molecular beam epitaxy and angle-resolved photoelectron spec-
troscopy system. Our results allow for the first comparison between theory and ex-
perimental results over the entire Fermi surface in the ferromagnetic-metallic phase.
We observe both of the predicted Fermi surface sheets, and find that the evolution
of the Fermi surface shape with doping is consistent with a rigid-band shifting of
the chemical potential. Measurements in the antiferromagnetic phase at $x > 0.5$
allow us to determine the changes in the low energy electronic structure linked to
the magnetic phase transition. The ability of this surface sensitive technique to
probe the bulk electronic structure of LSMO limits the possible depth of a surface
dead layer. This conclusion is supported by density functional theory calculations
for LSMO slabs, which indicate that the polarity of the (001) surface is efficiently
screened within \sim1 unit cell.

Eric Monkman
Cornell University

Date submitted: 19 Nov 2010
Electronic form version 1.4