Measuring mesoscopic spin currents by spin-to-charge conversion

PHILIPPE JACQUOD, PETER STANO, Physics Department, University of Arizona, 1118 E 4th Street, Tucson, Arizona 85721, USA — A number of theoretical investigations show that spin currents can be magneto-electrically generated by passing electric currents through spin-orbit coupled quantum dots. Measuring these currents has however not been achieved to date. In this talk, we present a theoretical proposal for measuring such mesoscopic spin currents with a voltage probe connected to the quantum dot via a single channel quantum point contact. We demonstrate that a spin current flowing through the quantum point contact results in an odd dependence of the charge current I_{qpc} on an externally applied Zeeman field, while this response is even in the absence of the spin current. The magnitude of the spin current is proportional to the zero field derivative of I_{qpc}, with a constant of proportionality depending weakly on the geometry of the point contact. Numerical estimates suggest that in this way, mesoscopic spin currents can successfully be measured in GaAs quantum dots.

Philippe Jacquod
Physics Department, University of Arizona,
1118 E 4th Street, Tucson, Arizona 85721, USA