Abstract Submitted for the MAR11 Meeting of The American Physical Society

BN / Graphene / BN RF Transistors HAN WANG, MIT, THITI TAYCHATANAPAT, Harvard University, ALLEN HSU, PABLO JARILLO-HERRERO, TOMAS PALACIOS, MIT — In this work we demonstrate the first BN/graphene/BN transistor for high frequency RF applications. This sandwich structure allows a significant improvement in the mobility of graphene, which reaches more than $18,000 \text{ cm}^2/\text{Vs}$ at room temperature. Graphene field effect transistors (GFETs) have been fabricated with $L_{DS} = 800$ nm and $L_G = 300$ nm. The minimum conduction point of these devices is very close to zero, a result of the negligible substrate doping to the graphene. A current density in excess of 1 A/mm and DC transconductance above 200 mS/mm are achieved for both electron and hole conductions. RF characterization is performed for the first time on this device structure and initial results show a current-gain cut-off frequency $f_T=10$ GHz. These experimental results have been combined with simulations of the small-signal model to study the scaling potential of these GFETs for high frequency applications. The impact of the access resistances $(\mathbf{R}_s, \mathbf{R}_d)$, the capacitances $(\mathbf{C}_{qs}, \mathbf{C}_{qd}, \mathbf{C}_{ds})$, and the transconductance (g_m) on the frequency performance of the GFETs has also been studied. Finally, the fabricated devices have been compared to GFETs fabricated with SiO_2 substrate and Al_2O_3 gate dielectrics. The improved performance obtained by the BN/graphene/BN structure is very promising to enable the next generation of high frequency RF electronics.

> Han Wang MIT

Date submitted: 28 Dec 2010

Electronic form version 1.4