First-principles calculations of gated adatoms on graphene1
KEVIN T. CHAN, HOONKYUNG LEE2, MARVIN L. COHEN, Dept. of Physics, University of California, Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory — The two-dimensional surface of graphene is well-suited for adsorption of adatoms or molecules. The application of a gate voltage can be used to precisely control the electron concentration of the adsorbate-graphene system. Such control over electronic properties of adsorbates on graphene might have useful applications in areas such as catalysis and hydrogen storage. In this work, the gating of a variety of adatoms adsorbed on graphene is studied using first-principles calculations. We compute the projected density of states, local electrostatic potential, and charge density of the adatom-graphene system as a function of gate voltage. We demonstrate that adatoms on graphene can be ionized by gating, and that the ionization causes a sharp change in the electrostatic potential. Additional interesting features of our results are also discussed.

1This work was supported by NSF Grant No. DMR10-1006184 and DOE under Contract No. DE-AC02-05CH11231. Computational resources were provided by the IT Division at LBNL.

2Present address: Dept. of Mechanical Engineering and Materials Science, Dept. of Chemistry, and the Smalley Institute for Nanoscale Science and Technology, Rice University

Kevin T. Chan
Dept. of Physics, University of California, Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory

Date submitted: 26 Nov 2010

Electronic form version 1.4