Abstract Submitted for the MAR11 Meeting of The American Physical Society

High Magnetic Field Studies of Pressure-induced Superconductor EuFe₂As₂ NOBUYUKI KURITA, MOTOI KIMATA, KOTA KODAMA, ATSUSHI HARADA, HIROYUKI SUZUKI, TAKEHIKO MATSUMOTO, SHINYA UJI, TAICHI TERASHIMA, National Institute for Materials Science, KEIZO MURATA, Graduate School of Science, Osaka City University — We have performed resistivity and susceptibility measurements of the pressure-induced superconductor EuFe₂As₂ under high magnetic fields up to 27 T. The upper critical field B_{c2} and its pressure evolution up to 3.2 GPa were determined in a wide temperature range down to 1.6 K. At 2.5 GPa, nearly the optimal pressure with T_c =30 K, $B_{c2}(0)$ obtained by the onset of resistive transitions are 25 T and 22 T for $B \parallel ab$ and $B \parallel c$, respectively, which are appreciably smaller than those for other Fe-based superconductors with similar T_c . The small $B_{c2}(0)$ values and the peculiar $B_{c2}(T)$ curves in EuFe₂As₂ can be explained by a multiple pair-breaking model including the exchange field due to the magnetic Eu²⁺ moments. We will also present the results of quantum oscillations observed above the optimal pressure.

Nobuyuki Kurita National Institute for Materials Science

Date submitted: 19 Nov 2010 Electronic form version 1.4