Transition-metal impurities and intercalation in Bi$_2$Se$_3$ M. WEINERT, Y. LIU, L. LI, U. Wisconsin-Milwaukee — The prototype topological insulator Bi$_2$Se$_3$ consists of 5-layer (QL) units. Using first-principles calculations, we show that even for large (20%) elongations along the c-axis, the in-plane lattice constant remains essentially unchanged and the nearest neighbor bond lengths within a QL vary by only \sim0.02 Å. These results suggest that impurities may preferentially intercalate between the QLs, possibly leading to δ-doped topological insulator superlattices. For Cu-intercalated Bi$_2$Se$_3$, the calculated separation between QLs slightly contracts (\sim2%), and the Cu intercalation layer provides the internal surfaces necessary for the material to exhibit a Dirac cone. The competition between substitutional impurities and intercalation layers for Cu and Mn will be discussed and compared to experiment.

Michael Weinert
U. Wisconsin-Milwaukee

Date submitted: 19 Nov 2010

Electronic form version 1.4