Correlation of Structure and Roughness with Fabrication Conditions of P3HT-PCBM Bilayer Interfaces with X-Ray Reflectometry

STUART KIRSCHNER, MING-LING YEH, NATHANIEL SMITH, HOWARD KATZ, DANIEL REICH, Johns Hopkins University — Organic semiconductors, including poly(3-hexylthiophene) (P3HT) and polymer-phenyl-C61-butyric acid methyl ester (PCBM), are considered as promising materials for applications such as photovoltaics, transistors, sensors, thermoelectrics, optoelectronics, and magnetoelectronics. In many cases, the interface plays a crucial role in device performance and in determining the origins of many effects. In this research, neat bilayers of P3HT-PCBM, and PCBM blended with polystyrenes, were studied with X-ray reflectometry (XRR), atomic force microscopy, and ultraviolet-visible spectroscopy. A polymer with a high atomic number element was included to improve the scattering length density contrast, and provided improved XRR resolution. A mobility of order 10^{-4} cm²/V*s was maintained. The effect of different annealing, solvent, spin coating, and other fabrication conditions, was explored. Applicability of XRR to study interface characteristics, in these systems, will be discussed.

1Supported by NSF ECCS-0823947

Stuart Kirschner
Johns Hopkins University

Date submitted: 19 Nov 2010

Electronic form version 1.4