Probing the Na atomic order in Na$_x$CoO$_2$, $x=0.67$ and 0.71 by NMR spectroscopy1 BEN-LI YOUNG, P.-Y. CHU, J.Y. JUANG, Department of Electrophysics, National Chiao Tung University, Taiwan, G.J. SHU, F.-T. HUANG, M.W. CHU, F.C. CHOU, Center for Condensed Matter Sciences, National Taiwan University, Taiwan — The sodium cobaltate Na$_x$CoO$_2$ has a layered structure, consisting of alternating triangular CoO$_2$ and Na planes. Evidences of Na atomic ordering have been reported at certain Na contents by different diffraction experiments. The Co magnetism, strongly influenced by the Na ordering, gives a unique phase diagram in Na$_x$CoO$_2$. In order to investigate the Na ordering and the Co magnetism, we conducted 23Na and 59Co NMR experiments in single crystals Na$_x$CoO$_2$ for $x=0.67$ and 0.71. We found that Na$_{0.67}$CoO$_2$ does not have well-defined Na structural order. However, the oxygen slightly-deficient sample Na$_{0.67}$CoO$_{1.98}$ shows a superstructure, as evidenced by the narrow and well-resolved NMR spectrum. As for Na$_{0.71}$CoO$_2$, Na ordering is also observed. We have tried to solve the Na ordering pattern from our NMR spectra. The results will be discussed and be compared with the existing structural models.

1This work was supported by NSC 98-2112-M-009-016-MY3 and the MOE ATU Program.

Ben-Li Young
Department of Electrophysics, National Chiao Tung University, Taiwan