Matter wave interferometry with large and complex molecules

STEFAN GERLICH, SANDRA EIBENBERGER, MATHIAS TOMANDL, University of Vienna, Faculty of Physics, JENS TÜXEN, MARCEL MAYOR, University of Basel, Department of Chemistry, MARKUS ARNDT, University of Vienna, Faculty of Physics — Matter wave interferometry with molecules of increasing size, mass and complexity explores the frontiers of quantum mechanics and it is a promising tool for determining molecular properties with high precision. The quantum wave nature of organic molecules is used in a Kapitza-Dirac-Talbot-Lau interferometer to generate a set of high-contrast interference fringes that are highly sensitive to external forces. This is exploited to access thermally averaged internal molecular properties, such as optical and static polarizabilities, static and thermally activated electric dipole moments, information about conformational differences and state changes, optical absorption spectra and more. The information about the internal states can be extracted through conservative interactions, i.e. allowing the persistence of full quantum delocalization in position space.

Stefan Gerlich
University of Vienna, Faculty of Physics

Date submitted: 19 Nov 2010